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NASA TT F-11,744

INFORMATION CAPACITY OF A PHOTON FIELD AND THE OPTIMIZATION
OF OPTICAL SYSTEMS FOR INFORMATION TRANSMISSION

I. A. Deryugin and V. N. Kurashov,
Kiev State University, Kiev, UkSSR

ABSTRACT. An examination is presented of the quantity of
information which can theoretically betransmitted over a
quantum channel, together with an analysis of methods for
realizing the potential possibilities of optical informa-
tion transmission systems. The problem consists of deter-
mining the influence of the statistics of laser emission on
the information capacity and of relating the statistics of
photoelectrons to actual communications systems using a
photo detector. It is judged that the most useful states
are ones having the smallest dispersion of photons, which
determines the fluctuation of the photoelectrons in the
receiving apparatus. Before the introduction of informa-
tion, the photon field has a minimum dispersion which
increases after the addition of information.

It was noted in [1, 2] that the phenomena of coherence and fluctuation of
laser radiation are directly related to various information effects which are of
interest in constructing an actual optical range communications system. Of the
problems arising during the investigation of this problem, we have separated the
following two: the influence of the statistics of laser radiation on the inform-
ation capacity of the radiation; the statistics «f photoelectrons and actual
communications systems containing photo deter:tors. These problems are closely
interrelated since, on the one hand, the statis=zics of photoelectrons is
determined by the statistics of photons, while on the other hand the information
capacity of a photon field is realized in the final analysis using communica-
tions systems containing photo detectors. In other words, we will be interested
in the quantity of information which can, in principle, be transmitted through a
quantum communications channel, as well as the wz=thods allowing these potential
capacities to be realized.

As we know, the quantum nature of laser radiation has forced the investiga-
tion of the influence of purely quantum effects on the process of information
transmission. It has been shown [3-7] that the fransition to quantum concepts
cannot be achieved by simply transferring concepts from classical information
theory. However, although certain positions from the new theory (such as the
presence of quantum noise hvAv or the fixed level of entropy reference) cannot
be called unexpected, others, generally speaking, require additional investiga-
tion. One of these is the problem of the influence of the process of
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information extraction on the total information properties of its carrier,
particularly the properties of the light photon field. As we know, in classic
wave optics, the process of measurement places no limitation on the state of the
field being measured. If there is a signal whose frequency spectrum is concen-
trated in band width &, according to the classic conceptions, in principle two
Av independent canonically coupled quantities can be measured with any required
accuracy, for example the amplitudes of electrical and magnetic fields of the
corresponding Fourier components. The position is otherwise in quantum theory.
The uncertainty relationships leave only A degrees of freedom, which naturally
reduces the total information which can be extracted by measuring the states of
the field. This source of reduction of the information capacity of a quantum
channel in comparison to the classical concepts, however, is not the only such
source.

- We know that a quantum set located in the eigenstate of a certain
P-representation produces upon measurement a definite value only for those
physical quantities whose operators commutate with operator P. Unfortunately,
actual communications systems cannot at the present time always record the
required physical quantities. Thus, we know [7-10] that the coherent radiation
of a single mode laser is an eigenstate in the representation of Glauber. On
the other hand, all recording devices which currently exist measure energetic
quantities, i.e. actually the number of photons arriving at the input of the
instrument over a certain time 7. However, states with fixed numbers of photons
are not the eigenstates in the Glauber representation. This means that in each
given measurement, a number of values may be produced with various probabil-
ities. Naturally, the formation of this additional uncertainty reduces the
quantity of information which can be extracted by the recording device. Thus,
after determining the maximum entropy of the photon field, acoording to [3-5],

g‘qv‘}"ﬁ?‘ % § (i3 W

Ex ot oA

where n is the mean number of photons arriving per unit time and thereby satis-
fying the requirements related to the reduction in the number of degrees of
freedom, we have still said nothing concerning the actual information capacity.
In order to estimate this quantity, we must fix the quantity measured at the
output of the channel, as well as the distribution of this quantity at the input
of the device which introduces the information. -If this distribution is other
than 6 -shaped, entropy (1) can be arbitrarily divided into two parts: '"useful"
and "useless'" entropy. The first portion can be used to introduce the informa-
tion of interest to us and therefore determines the actual information capacity
of the channel; the second results from statistical fluctuations in the physical
quantity being measured at the input of the device introducing the information.

These considerations show that the relationship of the statistical proper-
ties of a field to its information properties are of considerable interest.
Here we should note that in recent years a large number of works have appeared
dedicated to the statistics of laser and thermal radiation and its recording
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(for example, [7-17]) in which essentially contradictory information is fre-
quently encountered. This situation unfortunately occurs in defining the change
in fluctuations in the number of photons with increased degrees of coherence of
the radiation (see [11-13], also {17]). It seems natural to affirm that the
transition from a state with dispersion An? = n to a state with dispersion

An? = n?, which corresponds to transition from the radiation of a source which
is near harmonic to the radiation of an absolutely black body (where n>1)
should be accompanied by a reduction in the '"coherence," and not vice versa.
Since we will be interested in the following in the information properties of
the field, from this point of view the more preferable states are those with
lower dispersion of the number of photons, since it is this dispersion which
determines the fluctuation in the photoelectror recorded by the receiving
device. Thus, we can assume that before inform.cion is introduced, the field
had minimum possible dispersion, and that the dispersion was increased after the
information was introduced.

Information Capacity of a Photon Field

In the works of Stern [4, 5] and Gordon [3], it was shown that the
information capacity I of a quantum communications channel is limited by the
value of the maximum entropy

T

[<$q ma,sgv,:,ﬁ l+-# +m(l,+tt. (2)

-5

in which the distribution of photons corresponding to S is exponential,

q.max
i.e. the probability of the state with n photons is

(3)

where

It is easy to show [5, 6] that distribution (3) corresponds to the equi-
librium radiation of an absolutely black body; consequently, as in the classical
case, in quantum theory the signal with maximum information capacity corresponds
statistically to thermal noise. However, there is a difference in principle
here from the classical situation, in that the possibility of realizing the
entire value of entropy for transmission of messages, generally speaking,
remains unproven. Furthermore, with existing methods of selection and proc-
essing of information in the optical frequency range, based on the usage of
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energy sensitive devices, complete utilization of entropy S is impossible.

q.max
This results from the fact that, as was mentioned above, the state of the photon
field of a laser is not the eigenstate in the representation of occupation
numbers and, therefore, the measurements of the energy sensitive receiver will
include uncertainties related to the measurement process. Due to the additive

nature of entropy, the maximum possible portion of Sq nax which can be utilized

for the transmission of information is defined as the difference
AS g.s'q .max .~ Sy (4)

where S0 is the entropy of the initial state of the field. Thus, the informa-

tion capacity of the communications channel is limited by the relationship
t<as. (5)

Tf in the initial state S0 = 0, i,e. there are no fluctuations in the

measured object, formula (5) is converted to the ordinary classical Shannon
formula. It is this case which is analyzed in the classical theory where, in
principle, realizations of states without fluctuations are always possible., If

S0 # 0, the signal, after the message has been introduced, will contain both

"useful" information and a certain quantity of "useless'" information, related to
the random oscillations of the physical quantity at the input of the device
which introduces the information perceived by the receiver as noise. Since we

are analyzing energy sensitive recording devices here, we must find SO in the

representation of occupation numbers. As a model, let us use the idealized case
of a field in a single mode resonator without dissipation, since the presence of
additional modes or absorption by the walls only increases the field fluctuation
and consequently increases SO'

As usual, we will seek the solution of the Schroedinger time equation in
the form of a wave packet, which is transformed to the classical case at the
limit of large numbers. We know that the Hamiltonian of the field in the
resonator can be written in the form

(6)

where
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g= V%(E +at);
E«t]/g(zl*“:z):

n”’a'.{,’

N ne . )
Operators a and a are the operators of destruction and generation of photons

respectively; n is the operator of the number of particles. eigen functions of
of Hamiltonian (6) are the solution to the Schroedinger equation

H\}rn ﬂ E‘nq'n (7)

for the harmonic oscillator, which can be written in the following form [18]:

N
Ya(g) = Nue™ 3 H. (M), 8)

-

where

Ep == (tz + —2{) e

N = A&' .’.»
? (:r%?rzl)' '

o
=

Hn is the Hermit n-th order polynomial. It is not difficult to see that in the

stationary state, the following equalities are fulfilled:

gy =tpy =

AghAp = (tz o %?s):flm. (9)

Let us now find the solution to the Schroedinger time equation
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in 280 o 4 g, 9), (10)
which can be written in the form of an expansion with respect to the stationary
wave functions

{Byt

t 8
\F(qs t)mZAan (e . (11)
We require that at moment t = 0 the fluctuations of the field be minimal, i.e.

Aphq =I5, (12)

and, furthermore, the center of the wave packet be displaced in the positive
direction of p and q such that

{q)=q@)
{p)esp(0) (13)

From this we produce

‘1“(4,0) EA,, “"‘“(z:(;) axp{m-wﬁﬁr(q q((l)]a«»-‘”‘mz;} (14)

It is not difficult to see that in this case relationships (13) are fulfilled.
Equation (14) allows us to find the coefficients for the expansion of An' This

calculation is performed, for example, in [18], producing the following:
A J

MUP“"“*"T""’“ (15)

(16)

7 e .%i'— an 2 W)= o9 L)

The value of lAnl2 is the probability of the state with fixed number of photons

n. This allows us to calculate the entropy related to fluctuations at the input



of the device which introduces the information: /234

¢S, == _zolAn P lﬂ,A,. P = ___2 n'le T [ ?:f;:;']- (17)

A}

Thus, the minimum entropy of the field in this case is determined by the
entropy of the Poisson distribution. With large n, the Poisson distribution can
be replaced with sufficient accuracy by the Gaussian distribution, i.e.

Si= g (2nen). (18)

Expression (1) for the maximum entropy of the signal with average power nhw in
turn can be rewritten for large n in the form

&q «Mmax .ﬁk Iﬂ (e;i)r (19)

from which

. SRt (20)
L inln

g
TR Yg.max,

Consequently, only approximately one half of the maximum entropy of the
photon field can be used for the transmission of information. The remaining
portion of the entropy, resulting from the peculiarities of quantum theory
related to the possibility of measuring a definite physical quantity in a fixed
representation, cannot be separated by energy sensitive recording devices, and
is not available for the transfer of information.

Information Losses During Photo Detection

The result produced in the preceding section was discovered in the first
works of Stern [4, 5], which were dedicated to quantum theory of information for
the particular case of an ideal quantum amplifier. Similar relationships were
produced by the authors of the present article for the case of a multichannel
communications system with frequency division of channels [19], where the
process of separating the flux of photons into channels also involves a loss of



approximately one half of all the information. In the following we will find
the quantity of information separated by a photo detector and show that with
sufficiently high quantum effectiveness of the photo detector its information
effectiveness is also determined by formula (20) (this was partially done in
[23]). In this work, we will base ourselves on the relationships produced by
Mandel [12, 13, 15, 16], relating the statistical distribution of photons at the
input of a photo detector to the distribution of the output photoelectrons.
If at the input of the photosensitive surface, the intensity of the incident
light changes in the time interval [t,t + T] according to the rule I(t'), the
probability of recording precisely k photoelectrons in this time interval is
determined, according to Mandel, from the formula

-

P £, T) = LU (¢, TN expl—all ¢, T)) (21)
where
T
U, T) = S 1()dt's (22)
¢

o« is the quantum effectiveness of the photosensitive surface.

Distribution (21) describes the rescording of photoelectrons for a
definite realization of the input field. Actually, this quantity cannot be
observed; the observed quantity is the distribution of photoelectrons averaged
over a rather long time interval. If the random process describing the field at
the input of the photo detector has the properties of stability and ergodicity,
it can be assumed in most cases of interest to practice that this averaging is
independent of the selection of a reading time t and corresponds tc the.avcrage
for the set. Thus, if the value of U at the input can be considered continuotvs,
we produce finally

1 Py (™ P @y, (23)

where P(U) is the distribution of the classical field intensity at -the input of
the photo detector; P(k,T) is the probability of recording k photoelectrons
during the integration time T.

if the number of photons at the input is not great, intensity U has an
essentially discrete distribution and, consequently, the distribution of the
classical intensity P(U) should be replaced by the distribution of the
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occupation numbers of the photons P(n), where n = U/hw, and integration in (23)
by the corresponding summation:

o

Pk, Ty % = e (an)' P (n). (24)
7 e}

Relationships (23) and (24) are of great significance for the investigaticn of

optical information transmission systems, since practically all such systems

contain a photo detector. Below, on the basis of these formulas, we shall

produce the quantity of information I(k,n) at the output of the photo detector

and show the relationship of I(k,n) with the value of I in the preceding

section. For this, we consider that the quantity of information I(k,n) can be

written in the form ' /236

(4 1) = S(k)ms(k/n), (25)

where S(k) is the entropy of the output distribution of the photoelectrons;

S(kin) = — 3, P (n);o Pu (k) In Py (%) — (26)

n==l)

is its conditional entropy. Here Pn(k) is the probabili. - that when n photons

arrive at the input of a detector, precisely k photoelectrons will appear at
its output. From this definition and formula (24), it is easy to produce the
explicit form of Pn(k):

(27)

Suppose now the distribution of photons at the input is fixed by expression
(3), so that the entropy of the input signal is maximal and equal to (1). 1In
order to calculate S$(k) and S(k/n), we find further

where



C! = C 11

g—h,—_xs&m'
a+6 )’

wlnfl LS 1 (29)
o =In(1 +-a-)@m(1+.g§).
Using the expressions produced, we find
sfé)@mg P8 In P (&) = In(ena). (30)
. . =

Unfortunately, we camnot yet calculate S(k/n). However, we can find approximate

estimates for it, as was done in [4]. Replacing the entropy of the Poisson

distribution by the entropy of the Gaussian distribution, and replacing the sum

with respe t to n in (26) with integration, we produce

S {hin) = %ma@wéiw)ﬁ& s -
where
— BB 12 .
Thus, we produce the following final expression for the quantity of
information which can be extracted by a photo detector:
T oy %m‘i@”" g +8 (33)

With sufficiently high effectiveness of the photo detector, this latter

expression corresponds with an accuracy to a nonessential component with (20)
and, consequently, only one half of the entropy of the iInput distribution is
information entropy. However, if a € 1, the loss of information may be even

greater. For example, where @ = 0.01; n = 10%, we have I(k,n) ~ 0.2 S(n). Let

us emphasize in conclusion that the correspondence of formulas (20) and (33),
concluded on the basis of quite different moduli, results from the specific

quantum features of the informntion carrier, the photon field, as they appear in

different situations.

10
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The Photo Detector in Actual Communications Systems

Let us produce a certain relationship characterizing the operation of the
photo detector in an actual communications system. In order to do this, let us
analyze the receiver shown on Figure 1. We can ask the question how effective
is the usage of the quantum optical amplifier in this receiver for preliminarv
amplification of the signal when operating with a photo detector. Unfortun-
ately, there is not yet any sufficiently universal criterion to answer this
question. The estimates used in radio engineering, based on the signal/noise
ratio, cannot be used here, particularly with low level input signals, when only
a few quanta are recorded during the time of integration of the photo detector.
A more acceptable quantity is that suggested by Steinberg [20], which can be
written in slightly altered form as follows:

Y e
kS+ n

BV - [Rot W (30)
oy

where k_, Ak? and k Ak2

n n s +n s +n
trons at the output of the photo detector when noise alone is received and when
noise and signal are superimposed respectively. The sense of v is clear from
Figure 2. The greater v, the easier it is to distinguish between noise alone
and the superposition of signal plus noise and, therefore, the higher the
probability of detecting the signal. It can therefore be affirmed that the
usage of the quantum optical amplifier is expedient when the value of 7, called
the separation parameter, increases in comparison to a receiver without the
amplifier.

are the mean number and dispersion of elec-

]

Figure 1. Passage of Signal and Noise Through Simple
Optical Range Receiver

In order to determine v, we must calculate the mean value and dispersion of
the distribution of photoelectrons at the output of the detector with and
without the optical quantum amplifier. In order to do this, we use formula
(24), as well as an expression produced by Shimoda et al. [22] which determines
the distribution of photons P(m) at the output of the OQA:

11
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P(m) = 2 P(n)q,(m), (35)

where

— L —ny/1 L+ﬂ‘ 1 m—a -
q,(m) = ( m*-n) (77') (?7"'” ') where i > 1, (36)
0 where m <n;

P(n) is the input distribution of photons; qn(m) is the negative binomial

distribution; L is the internal noise of the amplifier; G is its gain. It is
easy to see from (24) that the values of the mean number of photoelectrons and
their dispersion at the output of the detector are related to the corresponding
values of distribution of photons at its input by the following relationships:

R = aum;
- — — (37)
AR? = a?Am® 4 am.

In the same way, the mean values and dispersion at the output of the OQA are
determined through the input quantities using the formulas:

m=Gn +L(G— 1);

- _ (38)
A = G*AR® + G(G~ 1) (R + L).

Finally, we must consider that during the additive combination of two independ-
ent, random quantities, their mean values and dispersions follow the relation-
ships:

CFpmx+p

AFTTP =A8 4 AR (39)

Considering (37)-(39), it is easy to produce the following expression for
the separation parameter:

12
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— v “}z?n-}—(lmg)(;in“}‘l-) “1"&%[’;"'}'1‘(1“%)]}' (40)

in which the system without the amplifier corresponds to the quantity ¥ («,1)
where G = 1. The estimation of the effectiveness of the work of the amplifiex
is performed by determining the difference

A=y G L) —y@,1), (41)

which should be positive if the usage of the amplifier is to yield any improve-
ment. In many cases, rather simple formulas can be produced for the value of
Ay. For example, if the amplifier is near ideal, i.e. L < N s Ns’ it is not
difficult to see that

Mi~eir [ VA ATt (st )~
-5

- %/“&%4;&52“ +(1~ & +ag) @t o) +

s Sy e A Y

(42)

for all G > 1. If we assume further that the distribution of the signal and
noise at the input is Poisson, i.e. An = n R An = ns, we can produce a

particularly simple expression for thc gain reallzed

13
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"cfnnj*vnn 43)
&gkq]

from which it follows that the usage of an ideal amplifier is more effective,
th. “ess the quantum sensitivity of the detector and the mean power of signal
and noise at the input of the receiver and the greater the gain G. It is
‘nteresting to note that at the limit of very large G, the separation parameter
approaches the following quantity

;is V—Vns+nn+Vnn

Y, IR e
Q-max-ns4~n ngt-n

: (44)

which determines the separation of the signal and noise in the system without
amplifier, but with quantum effectiveness of the photo detector equal to 1.

In the case of an
P} amplifier with very high /240
internal noise (L > n, n ),

assuming once more the input
distribution of the signal and
noise to be a Poisson dis-
tribution, we produce

Figure 2. Explanation of Physical Sense
of Separation Parameter v

(45)
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from which, assuming ﬁ; > ﬁh, H; > 1, we find that the amplifier yields an
additional gain in the case when

L (46)
LY

It must be noted that the difference in the results produced from the
results of Steinberg, who. found that the usage of an amplifier which was near
ideal yields an increase in gain only under the condition @ < 1/2, can be
explained by the difference in the description of the photo detector used. The
usage of a binomial distribution in place of (24), which was done in [20],
changes the value of the dispersion of the photoelectrons, and in the final
analysis changes the conditions applied on the quantum effectiveness of the
detector. Some additional difference in the quantitative relationships also
results from differences in definition of the separation parameter 7.

The description of the optical range receiver device presented above, based
on the introduction of the separation parameter Y, although it does have a
number of advantages when compared with the description made using the signal to
noise ratio, is still not completely satisfactory. For example, the possibility
of existence of v < 0, generally speaking, makes analysis of the operation of
the device more difficult. For certain distributions of input signal and noise
(for example, the exponential distribution) the introduction of v has no clear
sense at all, since these distributions have no maximum near their mean value.
Also, in many cases an increase in input noise may cause an increase in the
separation parameter, not a decrease, as would be expected. This defect does
not arise if the separation parameter v is determined according to Steinberg.
However, in this case, v does not allow of simple physical interpretation as in
our case. These difficulties force us to search for a more acceptable criterion
to be used in evaluating photo receptor operation in communications systems. In
many cases, it is more convenient to begin with direct calculation of the mean
error at the output of the receiver, than minimize it subsequently. Let us
analyze one system allowing this type of analysis, namely a binary system with
passive pause. This type of system is of considerable interest for operation in
the optical range, and has been investigated in the literature repeatedly [11,
21, 24-25], however most of this analysis has only been qualitative, which in /241
some cases has led to factual errors. We present below a rather general
description of the receiving device of a binary optical range communications
system and its optimization.

Let us analyze the system shown on Figure 3. The passage of the input
signal through the receiver channel causes a change not only in the mean signal
power, but in the type of distribution as well, in correspondence with formulas
(24 and (35). The output device, which has a certain fixed threshold, is to
differentiate the cases "signal plus noise" and '"noise,'" developing the signals
which will be represented in the following by '"1" and "0" respectively. The
effectiveness of this process depends both on the value of the threshold, and
on the distribution of probability of appearance of a fixed number of

15



photoelectrons at the output of the detector. If a certain number of photo-
electrons arriving at the detector during the integration time of the detector
is selected as the threshold, we can determine the probability of error as
follows:

o N
P, ”’%;‘H Pn(k), Pye= go Ps 1 (R). (47)

Here P1 is the probability that the symbol'l" will be received in place of "0";
P2 is the probability that "0'" will be received in place of "1"; Pn(k) and

PS + n(k) are the distributions of photoelectrons resulting from the action of
input noise and the superposition of signal plus noise respectively. Assuming
that the mean frequency of appearance of the symbols '"1'" and "0" is identical,
the overall probability of error at the output of the receiver can be repre-
sented in the form

& : .
%r‘ o é'fpl ""’Pﬁ}@%{g -+ éfig + n(k)‘“"‘Pn (k)}} (48)
or, using (24) and (25),
LA ., _
2Per = | ‘*’ég&g% 0y P, (0) = P () 49
where

(50)

is the distribution of the sum of the two independent random events. Now
substituting qn(m) and pm(k), we produce

16

/242



2Pel"::l+ 3

S E ) T e -

—B =T+ gﬂgo% (— 1) (-é-}"'* [Py nim)— P (0] X
dt N —f g, “l’_w_ f .
o ]

Performing summation with respect to i, we find

i &
N O vk d’"’ - ; af,
2P =1 +2°“Ef — 1 3 {ic”‘"e G—11"X%

% ¥ (G — G + 1™ (Poyn(n) — Pr, (1))
e}

or, performing the replacement

I

ﬁ#ﬂ m%ﬁgﬁ“"ﬁ‘*’ 1}
2Py, =1 + -

& o N & | ra-pe R T |
»Ee ;;agg{é# 011, 1 o 0P, €

(51)

(52)

(53)

(54)

For further simplification, it is convenient to introduce the generating func-

tions of the moments of the input distributions

M&)m 24P

(55)



which have the property that

Fs&n {x) = Fc (X) Fn ‘X), (56)

Considering this, (54) can be finally rewritten in the form

2P =1

N
o+ 2 . (57)
+ T i)*»r—,,-{e‘ PR (= B) Fe (— ) — F,, (— Bns.

k=0 kt dee

”

— ‘ . 0
n ; i hresho | dp=-t=
Op.Q.Am Plm) ~fDetectoi} oy device

KO LU : . et
) Paln) W , , R

Figure 3. Passage of Signal and Noise Through Binary Inform-
ation Receiver

Formula (57) determines the probability of an error at the output of the
receiver depending on parameters «, G and L, as well as the type of distribu-
tions of the input photons of the signal and of the noise. If the amplifier is
not used, the probability of error is produced from (57) where G = 1:

.ﬁ:"“ N
21?%rmw~“-ﬁ-(w n’*e«gm( WP (et P (— . (5B)

,g(_h - -

These last two expressions make it possible to determine the influence of the
amplifier on the outpu~ error. The presence of the amplifier in the c1rcu1t
leads to replacement of parameter a with the effective parameter '

~ Zn[G(e - 1)] in the generating functions, and to the addition of additive

- 8L

noise with generatine Functlnn e(

Optimization of this communications system consists of seeking out the

18
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minimum of Per' First of all, with fixed «, G and L, we establish the optimal
threshold Nopt’ which is defined as the integer less than the least positive

root of the equation:

N
d opt. {e(a»B)L [P; (— m Fn (~— B) - Fn‘ o p)j} = (), (59)
de.opt. :

The physical sense of this condition can be explained using Figure 4. If the
threshold is detcrmined from equation (59), the shaded area on Figure 4. which
determines the probability of an error, is minimal (Figure 4a). Since

Ps N n(0) < Pn(O), the derired threshold value is always definite. After

calculating the optimal threshold Nopt for a receiver with and without an

amplifier and comparing the corresponding minimai errors, we can make a judgment
concerning the effectiveness of using the amplifier with the given.parameters G
and L. In certain particularly simple cases, this task can be partially solved
analytically. For example, for the case often seen in the literature when the
distribution of photoelectrons of signal and noise is considered Poisson and
when there is no amplifier, the optimal threshold is determined precisely.
Actually, as was shown in [15], the Poisson distribution of photoelectrons cor-
responds to a 6-distribution of input photons, so that the generating functions
will be equal to:

Fs—0) =3
: o 60
Fo{—@) = €™, (60

and the optimal threshold will be

(61)

where ﬁ; and ﬁh are the number of photons in the signal and in the noise at the

input. In spite of the fact that the assumption of & -shaped distribution of
photons is an idealization, equation (61) gives a rather good approximation for

NOpt in certain other more realistic cases as well. Simple calculations show

that the selection of the threshold in correspondence with (61) allows a
considerable reduction of the average error in certain cases. For example,
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Flint [21] 1nvest1gates a system with the following characteristics:
ann 54102, an = 6-16, N = 5 and Poisson distribution of photoelectrons.
However, it is not difficult to see that the optimal threshold will be Nopt =1

where aﬁg = 6 and Nopt = 2 where aﬁ; = 16. The probability of error where

aﬁ; = 6 will, correspondingly, be as follows: P_. . = 0.009; P (N =5)>

> 0.21. Thus, proper selection of the threshold level allows the mean error to
be decreased by more than an order of magnitude.

Figure 4. Determination of the Optimal Threshold Level: a, Level
optimally; b, ¢, Level selected nonoptimaily

Let us now investigate the influence of an amplifier on the magnitude of
error once more, in the assumption of & -distribution of photons at the input.
The general expression for Nopt through the values of the parameters cannot be

found in this ca.«; however, by representing
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I the gain G is great enough, X, > 0 where L > nnea, i.e. when the internal

noise of the amplifier exceeds the noise 2t the input. Tn this situation, the

optima! threshold level will obviously be Nopt = 0, i.e. the "0" sioenal is

recorded if there are no photoelectrens at the output of the photo detectc-. and
the "1" will be recorded otherwise. This operatinr: ":ode is called the binury
mode. For a receiver operating in the binary ...« . * is easy to calculate the
probability of an error at the output:

2Rc w= bofeiy e Lo e

SR | o8 }’ ©
(G G— 1)'S

which reaches a minimum at

o

uit g
(66)
G a«r“[‘%.{.g] :

It follows from this that where n =1, GO ~ 1, i.e. a receiver device

without an amplifier is optimal. Actually, the usage of an amplifier with a
rather high gain and internal noise exceeding the input noise only worsens the
operation of the receiver in a binary system. However, if the internal noise of
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the amplifier is low, it is easy to see that in certain cases (in particular
where « € 1, n < 1) we can expect a certain decrease in the probability of

error in comparison to a system without an amplifier. Thus, where a = 0.05,

n, = 8, ﬁ; = 0.05, we produce for a system without an amplifier Per = (0.335, and

for a system with an amplifier with G = 20, L < n,ys considering only the first
two terms we produce Per < 0.081, so that the probability of error is decreased

by appicximately five times with threshold N = 1. Actually, for a system with
an amplifier with the parameters outlined above, the optimal threshold level
N ~ 30, as a result of which the error can be even less.
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